metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zi-Wei Gao,* Fang Xu, Cai-Yun Zhang and Ling-Xiang Gao

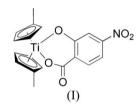
Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi'an 710062, People's Republic of China

Correspondence e-mail: zwgao@snnu.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.004 \text{ Å}$ Disorder in main residue R factor = 0.034 wR factor = 0.091 Data-to-parameter ratio = 12.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


Bis(η^5 -methylcyclopentadienyl)(5-nitrosalicylato- $\kappa^2 O^1, O^2$)titanium(IV)

In the title compound, $[Ti(C_6H_7)_2(C_7H_3NO_5)]$, the Ti atom is four-coordinate. The 5-nitrosalicylate ligand chelates it, forming a six-membered ring.

Received 13 January 2007 Accepted 16 January 2007

Comment

In the title compound, (I), the Ti atom exists in a four-coordinate distorted tetrahedral environment, with the 5-nitrosalicylate group acting as a bidentate chelate (Fig. 1 and Table 1). The structure is similar to that of the 3,5-nitrosalicylate, which is reported in the preceeding paper (Xu *et al.*, 2007).

Experimental

The methyl-substituted titanocene dichloride (η^5 -CH₃C₅H₄)₂TiCl₂ (2.0 mmol, 0.554 g) and acetylacetone (2.0 mmol) were dissolved in water (20 ml). The solution was added to a solution of 5-nitrosalicylic acid (2.2 mmol, 0.852 g) dissolved in chloroform–diethyl ether (20 ml, 3:1). The mixture was stirred for about 30 min. The organic phase was then separated, washed with saturated Na₂CO₃ and distilled water, and finally dried over anhydrous MgSO₄. Removal of the solvent give a product that was purified by recrystallization from a 1:1 mixture of dichloromethane and *n*-hexane. The crystals were allowed to grow at below room temperature. Dark-red acicular crystals of (I) were obtained after about one month. Analysis calculated for C₁₉H₁₇NO₅Ti: C 58.94, H 4.43, N 3.62%; found: C 59.50, H 3.39, N 3.25%.

Crystal data

$[Ti(C_6H_7)_2(C_7H_3NO_5)]$	$V = 827.6 (5) \text{ Å}^3$
$M_r = 387.21$	Z = 2
Triclinic, P1	$D_x = 1.554 \text{ Mg m}^{-3}$
a = 7.825 (3) Å	Mo $K\alpha$ radiation
b = 7.980 (3) Å	$\mu = 0.55 \text{ mm}^{-1}$
c = 14.706 (5) Å	T = 298 (2) K
$\alpha = 95.731 \ (6)^{\circ}$	Needle, dark red
$\beta = 99.083 \ (5)^{\circ}$	$0.39 \times 0.13 \times 0.09 \text{ mm}$
$\gamma = 112.056 \ (5)^{\circ}$	

Data collection

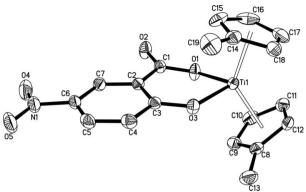
Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\min} = 0.814, \ T_{\max} = 0.952$

4416 measured reflections 2900 independent reflections 2412 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.013$ $\theta_{\text{max}} = 25.0^{\circ}$

 $\ensuremath{\mathbb{C}}$ 2007 International Union of Crystallography All rights reserved

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.043P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.034$	+ 0.3329P]
$wR(F^2) = 0.092$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
2900 reflections	$\Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3}$
235 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	


Table	1
-------	---

Selected geometric parameters (Å, $^\circ).$

Ti1-O3	1.9279 (16)	Ti1-C18	2.371 (3)
Ti1-O1	1.9458 (16)	Ti1-C15	2.386 (3)
Ti1-C16	2.339 (3)	Ti1-C10	2.391 (3)
Ti1-C11	2.348 (2)	Ti1-C9	2.413 (2)
Ti1-C17	2.351 (3)	Ti1-C8	2.416 (2)
Ti1-C12	2.354 (2)	Ti1-C14	2.445 (2)
O3-Ti1-O1	87.56 (7)	C3-O3-Ti1	130.47 (14)
C1-O1-Ti1	132.83 (15)		

There is methyl C–H rotational disorder in compound (I). The three H atoms attached to C13 are each disordered over two positions with equal occupancy; likewise for the three H atoms attached to C19. All H atoms were placed in calculated positions and treated as riding, with C–H = 0.93–0.96 Å and $U_{iso}(H) = 1.2$ or 1.5 times $U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

Figure 1

The molecular structure of (I), showing the atomic numbering. Displacement ellipsoids are drawn at the 30% probability level. H atoms and minor disorder components have been omitted.

We thank the National Natural Science Foundation of China (No. 20473051), the Natural Science Foundation of Shaanxi Province (No. 2006B23) and the National Basic Research Program of China (973 Program, No. 2004CCA00700) for research grants.

References

Bruker (2004). SADABS (Version 2.10). SAINT (Version 7.06a) and SMART (Version 5.054). Bruker AXS Inc., Madison, Winsonsin, USA.

Sheldrick, G. M. (1997*a*). *SHELXS97* and *SHELXTL97*. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Xu, F., Gao, Z.-W., Zhang, C.-Y., Gao, L.-X. & Li, J.-L. (2007). Acta Cryst. E63, m540–m541.